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Abstract

We show that the value of commitment in many standard games is frag-
ile. Specifically, when the second mover faces a small cost to observe the first
mover’s action, equilibrium payoffs are identical to the case where observation
is infinitely costly or the first mover’s actions are completely unobservable. Ap-
plications of our result include standard Stackelberg-Cournot and differentiated
product Bertrand games, as well as forms of commitment highlighted in Bolton
and Scharfstein (1990) and Bulow, Geanakoplos, and Klemperer (1985).
JEL Numbers: C72, D83, L13
Keywords: Cournot, Bertrand, Stackelberg, Observation cost, Value of com-
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1 Introduction

The value of commitment is among the central insights in game theory. Indeed, appli-
cations of this idea abound. In this paper we show that in many of these applications,
the value of commitment is not robust to a small and arguably realistic perturbation
of the model.
To fix ideas, consider an archetypal situation: Player 1 chooses an action in the

first period of a game. After observing this action, player 2 chooses an action in the
second period and payoffs are realized. Commitment is valuable for player 1 if he
achieves a higher equilibrium payoff in this sequential game than in the game where
he and player 2 move simultaneously.
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Now consider the following perturbation of the sequential game. Player 1 again
chooses some action in the first period. Following this, player 2 gets to observe player
1’s action if and only if he pays an arbitrarily small observation cost. If player 2 pays,
1’s action is perfectly revealed to him. Otherwise, 2 receives no information. Finally,
player 2 chooses his action and payoffs are realized.
The main result of our paper is that, for a quite general class of games corre-

sponding to this archetypal situation, the unique subgame perfect equilibrium of the
perturbed game completely destroys the value of commitment: Equilibrium payoffs
are identical to those in the simultaneous move game.
To develop an intuition for the result, we can break it down into two steps. First,

we argue that the result must hold if we limit attention to pure strategy subgame
perfect equilibria. Second, we determine that, under fairly standard assumptions, all
subgame perfect equilibria are in fact in pure strategies.
The value of commitment is lost in all pure strategy equilibria because the second

mover optimally chooses never to observe the first mover’s action. The reason is as
follows. By definition of pure strategy equilibrium, the first mover takes a certain
action with probability 1. Before observing, the second mover holds some beliefs
about which action the first mover has taken, and, by definition of equilibrium, these
beliefs are correct. Therefore, the second mover can perfectly predict the first mover’s
action. Thus, it is never rational for the second mover to pay any positive amount, no
matter how small, to observe and merely confirm his (correct) beliefs. This effectively
reduces the game to a game with simultaneous moves, thereby destroying the value
of commitment.
The absence of mixed strategy equilibria follows from the “well-behavedness”

of the players’optimization problems. If the first mover’s optimization problem is
strictly concave given subgame perfect equilibrium beliefs about the second mover’s
behavior, then the first mover always has a unique best reply given his beliefs. In that
case, mixing is not incentive compatible and the first mover must be playing a pure
strategy. Strict concavity of the second mover’s problem given his beliefs about–
or observation of– the action of the first mover leads to an analogous conclusion.
Therefore, all equilibria are in pure strategies.
The conventional recipe for commitment has two key ingredients: (1) Irreversibil-

ity and (2) observability (see, e.g., Dixit and Skeath, 1998). But, as we show, it is
not enough that the first mover’s action can be observed. For commitment to have
value this action must be observed. However, if observing is at all costly, this will
generally not happen in equilibrium because it is not incentive compatible. In other
words, unless the second mover is somehow committed to observing the first mover’s
action, he will not do so. As a result, the value of commitment breaks down. Thus,
an important implication of our result is that the value of commitment hinges on the
additional assumption that the second mover must be committed to observing the
first mover’s action.
In games where, in the conventional set up, both players are better off under
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sequential moves than under simultaneous moves– as is the case in differentiated
product Bertrand competition or other games with strategic complements– the sec-
ond mover at least has an incentive to commit to observing the first mover’s action.
However, if the second mover in the sequential game is worse off than in the simulta-
neous game– as is the case in Stackelberg-Cournot competition or other games with
strategic substitutes– then the second mover has no such incentive. Hence, the first
mover must not only seek to commit himself to a particular action, but also seek
to commit the second mover to observing that action. If we assume that the act
of observing is itself both observable and verifiable, then the first mover might be
able to achieve this by offering a subsidy to the second mover for observing the first
mover’s action. But when observing is not observable or unverifiable, even such side
payments cannot restore the value of commitment.
The paper proceeds as follows: The remainder of this section places our findings

in the context of the extant literature. In Section 2, we show that the value of
commitment is destroyed in Stackelberg-Cournot and differentiated product Bertrand
competition when observing the first player’s action is costly. In Section 3, we offer a
general model illustrating the broad applicability of the idea. In Section 4, we extend
the result to related models of commitment. Using the corporate finance model
of Bolton and Scharfstein (1990), we show that the basic intuition carries over to
situations where not all assumptions underlying our general model are satisfied. Using
the multi-market oligopoly model of Bulow, Geanakoplos, and Klemperer (1985),
we show that indirect commitment is likewise destroyed by small observations costs.
Finally, we show that a form of “double commitment”does survive costly observation.
Specifically, in the model of Fershtman (1985), a firm gains a strategic advantage
by committing a manager to act more aggressively than profit maximization would
warrant. We show that the value of commitment survives costly observation when
the firm can commit the manager to punishing the follower for not observing. Finally,
section 5 concludes.
Related Literature
Worries about the fragility of commitment date back to the seminal paper by

Bagwell (1995). He pointed out that, when the second mover receives a noisy signal
about the first mover’s action rather than observing it precisely, the value of commit-
ment is destroyed in any pure strategy equilibrium. Van Damme and Hurkens (1997),
however, show that when mixed strategy equilibria are admitted, this conclusion is
reversed: There always exists a mixed strategy equilibrium that preserves the value
of commitment as the signal noise vanishes.
Várdy (2004) considers the same issue but endogenizes the second mover’s ob-

servation decision in the same fashion as we do. His main findings parallel those in
noisy observation games– commitment is destroyed in pure strategies and preserved
in mixed strategies.
Presumably for tractability reasons, this earlier literature assumed that the action

space was discrete. However, Morgan and Várdy (2007) point out that, at least in
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the setting of Tullock contests, this assumption is not innocuous. In particular, they
find that the value of commitment is destroyed in all equilibria when observation is
costly and the action space is continuous. The main contribution of the present paper
is to show that this observation holds more generally and to discuss the implications
for many standard models in industrial organization.

2 Cournot and Bertrand Competition

To illustrate the main point of the paper, we begin by analyzing the effect of endoge-
nous and costly observation on the value of commitment in two workhorse models of
imperfect competition.

2.1 Stackelberg-Cournot Games

Perhaps the earliest application of the value of commitment is due to Stackelberg
(1934). Stackelberg observed that when two otherwise identical firms engage in quan-
tity competition, it is to the advantage of either of the firms to commit to its quantity
ahead of the other. Upon observing the chosen quantity, the firm moving second op-
timally reduces its quantity choice, which increases the first mover’s profits.
The following illustration of this idea is completely standard: There are two firms,

i = 1, 2, each of whom chooses a quantity xi. They face a linear inverse demand
curve P = 1− x1 − x2 and have zero production costs. If the firms choose quantities
simultaneously, the unique Nash equilibrium is for each to choose xi = 1

3
, thereby

earning profits πi = 1
9
. If, however, firm 1 gets to choose its quantity first and this

quantity is observed by firm 2, then firm 1 selects x1 = 1
2
. Firm 2 replies with x2 = 1

4
,

and firm 1 gains a first mover advantage by virtue of its ability to commit to a larger
quantity. Indeed, in this case, firm 1 earns π1 = 1

8
, while firm 2 earns only π2 = 1

16
.

Now, consider a variation of the sequential game. As before, firm 1 selects its
quantity first. Following this, the decision by firm 2 to observe firm 1’s choice is
endogenous. Firm 2 can pay an observation cost ε ≥ 0 and perfectly observe firms 1’s
quantity, or decline this option and observe nothing prior to making its own choice.
First, suppose that the observation cost is ε = 0. In that case, observation is

endogenous but there are no “frictions”associated with firm 2’s decision to observe.
Since firm 2 is at a disadvantage in the sequential game, one might have thought
that endogenizing the observation decision would accord firm 2 the opportunity to
avoid observing firm 1’s quantity, play the simultaneous move game, and undo the
first mover advantage of firm 1. As we show in the next Proposition, this intuition is
flawed.

Proposition 1 When ε = 0, the Stackelberg outcome obtains in the unique subgame
perfect equilibrium in undominated strategies.
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Proof. First, notice that any mixed strategy in which firm 2 chooses not to observe
firm 1’s choice with positive probability is weakly dominated by the pure strategy
where firm 2 observes with probability one. Therefore, in any subgame perfect equi-
librium in undominated strategies, firm 2 must observe firm 1’s choice with certainty.
Hence, the unique subgame perfect equilibrium in undominated strategies induces
the Stackelberg outcome.

Next, consider the case where ε > 0.

Proposition 2 When ε > 0, the first mover advantage vanishes. That is, the
Cournot outcome obtains in the unique subgame perfect equilibrium.

Proof. Following firm 1’s quantity choice, the continuation play in any subgame per-
fect equilibrium is as follows: Firm 2 chooses to observe 1’s quantity with probability
p. If firm 2 observes, then it best responds to firm 1’s action by selecting a quantity

x2 (x1) =
1

2
(1− x1)

If firm 2 does not observe, then 2 selects a quantity x2 according to some cdf F .
Now consider the optimization problem of firm 1 given its beliefs about the con-

tinuation. Firm 1’s expected profits from choosing x1 are

Eπ1 = x1

(
p (1− x1 − x2 (x1)) + (1− p)

∫
X2

(1− x1 − t) dF (t)

)
Substituting for x2 (x1) gives

Eπ1 = x1

(
p

1

2
(1− x1) + (1− p) (1− x1 − E [x2])

)
(1)

Notice that this is simply a quadratic expression in x1. Since it is strictly concave
in x1, this function attains a unique global maximum. Therefore, optimizing play by
firm 1 always entails choosing a pure strategy.
Now consider firm 2’s situation. It knows that firm 1 plays a pure strategy.

Moreover, in equilibrium, firm 2 correctly anticipates what this pure strategy is.
Hence, it is not a best response for firm 2 to pay the observation cost ε > 0. Of
course, firm 1 is aware of this and realizes that changes in its quantity provoke no
reaction from firm 2. Hence, both firms choose their quantities like they do in the
simultaneous game and there is no value of commitment.

Why is the value of commitment destroyed? The key is that the standard Cournot
and Stackelberg games are “well-behaved,” in the sense that firm 1’s optimization
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problem always has a unique global maximizer. When observation is costly, the only
way for firm 1 to derive any advantage from commitment is to induce firm 2 to observe
its choice at least some of the time. But for that to happen, firm 2 must derive value
from this observation in equilibrium. In turn, this requires that firm 1 randomize
its quantity choice, but such randomization is not credible since firm 1’s problem is
strictly concave.

2.2 Differentiated Product Bertrand Games

One might conjecture that the fragility of the value of commitment in the Stackelberg-
Cournot case stems from the fact that firm 1’s commitment makes firm 2 worse
off. Indeed, if given the opportunity, firm 2 would prefer to move simultaneously
or commit to never observe firm 1’s quantity. Our next application shows that this
intuition is wrong.
Recall that in the standard differentiated product Bertrand setting, both firms

prefer to move sequentially rather than simultaneously. Thus, if it could commit, firm
2 would prefer to always observe the action taken by firm 1. Indeed, when observation
costs are zero, the scenario in which firm 2 always observes and the commitment
outcome obtains is the unique subgame perfect equilibrium in undominated strategies.
But when observation costs are non-zero, this is no longer the case. As we will
show, despite the fact that both firms would benefit, the value of commitment is still
destroyed when observation is costly.

Proposition 3 When ε > 0, the value of commitment and the second mover advan-
tage vanish.

The proof of the proposition is isomorphic to that given in Proposition 2. To see
this, notice that firm 1’s optimization problem is analogous to that given in equation
(1). Suppose that firms face linear demand curves qi = 1− xi + xj, where xi is now
interpreted as the price chosen by firm i. In that case, firm 1’s expected profit is

Eπ1 = x1

(
p (1− x1 + x2 (x1)) + (1− p)

∫
X2

(1− x1 + t) dF (t)

)
= x1

(
p

(
1 +

1

2
(1− x1)

)
+ (1− p) (1− x1 + E [x2])

)
(2)

Equation (2) is analogous to equation (1). Thus, using identical arguments as in the
Stackelberg-Cournot case, it follows that commitment has no value: In the unique
subgame perfect equilibrium of the sequential Bertrand game with observation costs,
the price levels are identical to those chosen in the simultaneous move game.
The point is that since firm 1 cannot credibly commit to randomize its prices

(though it would like to), firm 2 cannot commit to observe firm 1’s move. The end
result is that the game collapses to what is, essentially, a simultaneous move game.
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3 A Generalization

Next, we generalize the examples given above to describe a class of sequential games
where the value of commitment vanishes in the presence of observation costs.
Consider the following sequential move game. First, player 1 takes an action

x1 ∈ X1 = [x1, x1]. Then, player 2 gets to observe player 1’s action if and only if he
pays an observation cost ε > 0. Finally, player 2 takes an action x2 ∈ X2 = [x2, x2]
and payoffs are realized. The payoffΠ1 to player 1 only depends on the pair of actions
x1, x2. The payoffΠ2 to player 2 also depends on whether he has observed player 1’s
action. That is,

Π1 = π1 (x1, x2)

Π2 = π2 (x2, x1)− Iε

where I is an indicator function which is equal to 1 if player 2 chose to observe and
zero otherwise.
We make the following (fairly standard) assumptions about the profit functions

πi (xi, xj):
Assumption 1. πi (xi, xj) is continuous, twice differentiable and strictly concave

in xi ∈ Xi.
Assumption 1 is a usual one for obtaining “well-behaved”payoff functions for both

players. In particular, if xi (xj) denotes the best response of player i to action xj,
then Assumption 1 implies that xi (xj) is a continuous function. As a consequence
of the structure of the best response functions and the application of Brouwer’s fixed
point theorem, we have
Fact 1. There exists at least one pure strategy Nash equilibrium in the simulta-

neous move game.
For analyzing subgame perfect equilibria in sequential games, a slightly stronger

assumption is often invoked. We shall do so here.
Assumption 2. π1 (x1, x2 (x1)) is strictly concave in x1 ∈ X1.
Assumption 2 implies that in the sequential game where player 2 gets to observe

1’s choice, player 1 has a unique best action. Together with Assumption 1 this implies:
Fact 2. The sequential move game without endogenous observation admits a

unique subgame perfect equilibrium.
Notice that the examples previously studied indeed satisfy these assumptions, as

do many standard applications in the industrial organization literature.
We can now show that

Proposition 4 When ε > 0, all subgame perfect equilibria of the sequential game are
payoff equivalent to a Nash equilibrium of the simultaneous game. In other words,
commitment has no value.
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Proof. First, we show that player 1 always plays a pure strategy in all subgame
perfect equilibria. Then we argue that player 2 never pays to observe player 1’s
move. Finally, we conclude that the value of commitment is lost completely.
With probability p, player 2 observes player 1’s action, x1. Conditional on observ-

ing, subgame perfection implies that player 2 plays his unique best response x2 (x1).
With probability (1− p), player 2 does not observe player 1’s action. In that case,
we represent player 1’s beliefs about player 2’s action by the cdf H (x2). Player 1’s
expected profits, Π (x1), are

Π (x1) = pπ1 (x1, x2 (x1)) + (1− p)
∫
x2

π1 (x1, x2) dH (x2)

In this expression, the integral is strictly concave in x1 because π1 (x1, x2) is strictly
concave in x1 for each x2. Moreover, the function π1 (x1, x2 (x1)) is strictly concave
by assumption. Hence, as a convex combination of two expressions that are strictly
concave in x1, Π1 (x1) is also strictly concave.
Strict concavity of Π1 (x1) implies that player 1 has a unique best response to

player 2’s anticipated behavior. In turn, this implies that player 1 cannot be mixing
and must be playing a pure strategy. Because player 1 is playing a pure strategy, in
equilibrium, player 2 can perfectly predict the action taken by player 1. Therefore,
it is not rational for player 2 to pay any positive amount, no matter how small, to
observe player 1’s action and merely confirm his (correct) beliefs.
The fact that player 2 never observes player 1’s action reduces the game to one of,

essentially, simultaneous moves. Hence, any subgame perfect equilibrium of the se-
quential game with observation costs must be payoff equivalent to a Nash equilibrium
of the simultaneous move game.

4 Extensions

The key features of the model in Section 3 are that: (1) strategies are continuous;
(2) payoffs (including strategic effects) are strictly concave; and (3) once player 1
undertakes an action, he has no further role in the game. In this section, we show that
the intuition of Proposition 4 extends to situations where some of these assumptions
are violated. We demonstrate this in the context of seminal models from the corporate
finance and industrial organization literatures.1

4.1 Bolton and Scharfstein (1990)

Bolton and Scharfstein (BS, 1990) study how potential predation by a rival distorts
the optimal financing contract between an investor and a firm. One of their main re-
sults is to show that, when the financing contract is publicly observable, commitment

1The model of Bolton and Scharfstein (1990) violates (1) and (2), while Bulow, Geanakoplos,
and Klemperer (1985) violate (3).
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is valuable for the investor. Specifically, the investor increases his expected profits by
distorting the probability of refinancing in order to blunt the rival firm’s incentives to
predate. When the contract is unobservable to the rival firm, the investor does not
distort and predation occurs. Our concern centers on the case where the contract is
observable, but at an arbitrarily small cost. One might be tempted to apply Propo-
sition 4 above. However, in Bolton and Scharfstein, the required conditions do not
hold. Specifically, the strategy space of the rival firm is not continuous, nor is the
investor’s problem strictly concave. Even though these conditions are not satisfied,
the same result obtains: When observation cost is costly, the value of commitment
disappears.
To establish this, we quickly sketch the model and then show that all subgame

perfect equilibria of the game with costly observation give the investor the same
expected payoffs as when the contract is completely unobservable. To facilitate com-
parison with the original model, we adopt Bolton and Scharfstein’s notation.
There are two firms, A and B, competing in a market for two periods with no

discounting. To compete, a firm must pay a fixed cost F in each period. Firm A has
deep pockets and is assumed to compete in both periods. Firm B lacks the resources
to pay the fixed cost and must turn to an investor for financing. The investor is risk
neutral and is not capital constrained. In each period in which firm B competes, it
obtains either high profits or low profits– πH or πL, respectively– gross of its fixed
costs. The profit realization of firm B is independent across periods but does depend
on the action of firm A. In each period, firm A may choose to undertake a predatory
action at a cost c. If firm A predates, then the probability that firm B obtains low
profits is µ; otherwise it is θ, where µ > θ. It is useful to denote by π̄ the average
profits of firm B when firm A does not predate. The rationale for predation by firm
A is that this may force firm B to exit the market in the second period. In that case,
firm A earns monopoly profits πM , which are strictly larger than the duopoly profits
πD it earns if firm B competes in period 2.
The diffi culty facing the investor is that, while the distribution of firm B’s profits

is common knowledge, the exact realization in each period is disclosed only to the
firm. Thus, the investor can only contract on B’s reported– rather than actual–
profits. The contractual instruments available to the investor are the probability of
providing additional financing at the conclusion of period 1, as well as the required
repayments at the end of each period, both as a function of reported profits. Tension
in the model arises when πL < F < π̄. That is, the investor would be unwilling to
finance the firm if he expected to only recover low profits, but would be willing to
finance in exchange for average profits. Let βi denote the probability of additional
financing following a profit report i ∈ {L,H} at the end of period 1. Let Rit denote
the repayment amount to the investor following report i in period t.
The model is most interesting when (1) it is optimal for the investor to provide

financing to firm B and to deter predation; and (2) it is optimal for firm A to predate if
the investor optimally structures the contract ignoring predation incentives. Formally,
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we assume
BS Assumption 1. πL − F + (1− µ) (π̄ − F ) > 0. (The investor is willing to

finance.)
BS Assumption 2. (µ− θ) (πM − πD) > c. (Predation by firm A is optimal in

the face of an optimal contract which ignores predation.)
BS Assumption 3. (1− θ) c

(µ−θ)(πM−πD)
> 1 − µ. (The investor benefits from

deterring predation.)
In Proposition 3, Bolton and Scharfstein show that when the incentive contract

is unobservable to firm A, the investor cannot deter predation and the investor earns
expected profits of πL−F + (1− µ) (π̄ − F ). In Proposition 2, they show that when
the contract is observable, the optimal contract deters predation and the investor
earns expected profits of πL − F + (1− θ) (π̄ − F ) c/((µ− θ) (πM − πD)). By BS
Assumption 3, it is obvious that investor profits are higher in the latter case. For
future reference, we shall refer to the predation deterring contract of Proposition 2
as “contract 2” and to the predation accommodating contract of Proposition 3 as
“contract 3.”
Now consider a variation of the game where observing B’s contract is costly to

firm A. Suppose that, after the contract between the investor and firm B is signed,
firm A can observe/verify/authenticate it by paying a cost ε > 0. Otherwise, firm A
observes nothing. Then,

Proposition 5 With costly observation, there is no value to commitment.
Formally, in any subgame perfect equilibrium, the investor earns expected profits

of πL − F + (1− µ) (π̄ − F ).

Proof. Define p to be the probability that firm A chooses to observe the contract
between the investor and firm B. It is obvious that if firm B and the investor play
a pure strategy equilibrium in selecting a contract, then p = 0 in any subgame
perfect equilibrium. One such equilibrium is where the investor proposes contract 3,
while firm A never pays to observe and predates. Trivially, this yields the investor the
expected profits of πL−F+(1− µ) (π̄ − F ). Moreover, from Bolton and Scharfstein’s
Proposition 3, if p = 0, contract 3 is the only contract consistent with pure strategy
subgame perfect equilibrium.
Now consider mixed strategy equilibria. First, notice that all contracting strate-

gies other than contracts 2 and 3 are dominated. Thus, the strategy of the investor in
any candidate mixed strategy equilibrium consists of a convex combination of offering
contracts 2 and 3.
Next, we show that p ∈ (0, 1) in any candidate mixed strategy equilibrium. If

p = 0, then we are back in the situation described above and the only subgame
perfect equilibrium is where the investor offers contract 3, which is a pure strategy.
When p = 1, the situation is identical to Bolton and Scharfstein’s Proposition 2 and
a pure strategy– offering contract 2– is optimal for the investor. But, as we have
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shown, if the investor is playing a pure strategy, then p must be zero, which is a
contradiction. Hence, p ∈ (0, 1).
The third step is to show that if firm A does not observe the contract, then it will

predate. To see this, notice that firm A is indifferent between predating and not when
contract 2 is offered, while it strictly prefers to predate when contract 3 is offered.
Thus, faced with any non-degenerate convex combination of contracts 2 and 3 being
offered to firm B, firm A strictly prefers to predate conditional on not observing.
Finally, notice that if the investor offers contract 3, then, regardless of whether

firm A observes or not, it always predates. Therefore, the investor earns expected
profits of πL−F +(1− µ) (π̄ − F ) when offering contract 3. Of course, when mixing,
the investor must be indifferent between offering contract 3 and contract 2. Thus,
the investor must earn the same expected profits when offering contract 2. This
completes the proof.

The key implication of Proposition 5 is that the case where the contract is perfectly
observable does not approximate the more realistic case where firm A can observe this
contract at low cost. Indeed, low observation costs are payoff equivalent to infinite
observation costs.
Interestingly, in the costly observation version of Bolton and Scharfstein, it is not

the case that firm A never observes in all subgame perfect equilibria. Indeed, from
the proof of Proposition 5 we know that there is a mixed strategy equilibrium in
which firm A observes the contract with strictly positive probability. Even in that
equilibrium, however, the value of commitment is lost completely.

4.2 Bulow, Geanakoplos, and Klemperer (1985)

In their seminal paper, Bulow, Geanakoplos, and Klemperer (BGK, 1985) highlight
the value of indirect commitment. To see how indirect commitment works, consider
a two period model of a market with experience curves. In period 1, firm 1 acts as
a monopolist and chooses its output. In period 2– perhaps because firm 1’s patent
protection has run out– firms 1 and 2 compete in quantities. Firm 1’s marginal cost
in period 2 is affected by its “experience”– i.e., output– in period 1. The more it
produces in period 1, the lower its marginal cost in the next period. Hence, firm 1
achieves a strategic advantage and associated value of commitment by overproducing
in period 1 relative to the case where it is a monopoly in both periods. As BGK
show, the same idea holds whenever firms 1 and 2 engage in oligopolistic competition
in some market, k, and prior to this, firm 1 commits to some action in a different
market, l, that affects its marginal profitability in market k.
Consider the following sketch of their model. First, player 1 takes an action

c1 ∈ C1 = [c1, c1]. Following this, players 1 and 2 simultaneously take actions x1 ∈
X1 = [x1, x1] and x2 ∈ X2 = [x2, x2], respectively, and payoffs are realized. The
payoff Π1 to player 1 depends on c1, x1, x2. The payoff Π2 to player 2 depends on
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x1, x2. Hence,

Π1 = π1 (x1, x2, c1)

Π2 = π2 (x2, x1)

Consider two benchmark games: (1) Player 1’s choice of c1 is unobservable to
player 2. (2) Player 1’s choice of c1 is observed perfectly by player 2. We shall
refer to these benchmarks as the “simultaneous game”and the “sequential game,”
respectively. Throughout, we restrict attention to interior solutions.
We make two assumptions to ensure that the simultaneous and sequential games

are well-behaved.
BGK Assumption 1. π1 (c1, x1, x2) is continuous, twice differentiable and neg-

ative definite on [c1, c1]× [x1, x1]. Similarly, π2 (x2, x1) is continuous, twice differen-
tiable and strictly concave in x2 ∈ X2.
As a consequence of the structure of the best response functions and Brouwer’s

fixed point theorem, we have
BGK Fact 1. There exists at least one pure strategy Nash equilibrium (c∗1, x

∗
1, x
∗
2)

in the simultaneous game.
BGK Fact 2. There are no mixed strategy Nash equilibria in the simultaneous

game.
Thus, equilibrium in the simultaneous game is determined by the simultaneous

solution to

∂

∂x1

π1 (x1, x2, c1) = 0 (3)

∂

∂x2

π2 (x1, x2) = 0

and
∂

∂c1

π1 (x1, x2, c1) = 0 (4)

Next, we turn to the sequential game and study subgame perfect equilibria. First,
we need to ensure that following any history, c1, the game is well-behaved. This
amounts to
BGK Assumption 2. For given c1, there exists a unique Nash equilibrium

(x∗1 (c1) , x∗2 (c1)).
Assumption 2 merely guarantees that equilibrium multiplicity and equilibrium

selection do not play a strategic role in player 1’s choice of c1 in the first period.
BGK Assumption 3. π1 (c1, x

∗
1 (c1) , x∗2 (c1)) is strictly concave in c1 ∈ [c1, c1].

BGK Assumptions 1-3 imply that the sequential game has a unique subgame
perfect equilibrium, comprising a set of pure strategies ((c∗1, x

∗
1 (c1)) , x∗2 (c1)). The
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program to find the subgame perfect equilibrium entails: (1) solving

∂

∂x1

π1 (x1, x2, c1) = 0 (5)

∂

∂x2

π2 (x1, x2) = 0

for x1 and x2 given c1; (2) substituting the (unique) solution to the system (5) into
the objective function; and (3) choosing c1 such that

∂

∂c1

π1 (x∗1 (c1) , x∗2 (c1) , c1) = 0 (6)

Now, let us amend the model and endogenize the observation decision. Specifi-
cally, suppose that player 2 gets to observe player 1’s action c1 if and only if he pays
ε > 0. We assume that player 2’s observation decision is common knowledge. In this
case, the payoff function for player 2 is

Π2 = π2 (x2, x1)− Iε

Let xYi , i = 1, 2, denote player i’s action conditional on player 2 observing, while
xNi denotes player i’s action conditional on player 2 not observing. Suppose that
with probability p player 2 observes player 1’s choice of c1. Then, player 1’s problem
corresponds to choosing c1, xY1 , and x

N
1 to maximize

Π1 = pπ1

(
c1, x

Y
1 , x

Y
2

)
+ (1− p) π1

(
c1, x

N
1 , x

N
2

)
By subgame perfection, we know that xY1 = x∗1 (c1) and xY2 = x∗2 (c1). Note that
by BGK Assumption 1 we also know that xN2 is a pure strategy. Hence, player 1’s
problem reduces to choosing c1 and xN1 to maximize

Π1 = pπ1 (c1, x
∗
1 (c1) , x∗2 (c1)) + (1− p)π1

(
c1, x

N
1 , x

N
2

)
(7)

The following technical lemma implies concavity of this problem.

Lemma 1 The Hessian of Π1 in equation (7) is negative definite on [c1, c1]× [x1, x1].

Proof. First, notice that by BGK Assumptions 1 and 3,

∂2Π1

∂c2
1

= p
∂2π1 (c1, x

∗
1 (c1) , x∗2 (c1))

∂c2
1

+ (1− p)
∂2π1

(
c1, x

N
1 , x

N
2

)
∂c2

1

< 0

Next, notice that by BGK Assumption 1,

∂2Π1

(∂xN1 )
2 = (1− p)

∂2π1

(
c1, x

N
1 , x

N
2

)
(∂xN1 )

2 < 0
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Finally, notice that
∂2Π1

∂xN1 ∂c1

= (1− p)
∂2π1

(
c1, x

N
1 , x

N
2

)
∂xN1 ∂c1

It remains to show that ∂2Π1

∂c21

∂2Π1

(∂xN1 )
2 >

(
∂2Π1

∂xN1 ∂c1

)2

. Notice that

∂2Π1

∂c2
1

∂2Π1

(∂xN1 )
2 = (1− p)2 ∂

2π1

(
c1, x

N
1 , x

N
2

)
∂c2

1

∂2π1

(
c1, x

N
1 , x

N
2

)
(∂xN1 )

2

+p (1− p) ∂
2π1 (c1, x

∗
1 (c1) , x∗2 (c1))

∂c2
1

∂2π1

(
c1, x

N
1 , x

N
2

)
(∂xN1 )

2

> (1− p)2 ∂
2π1

(
c1, x

N
1 , x

N
2

)
∂c2

1

∂2π1

(
c1, x

N
1 , x

N
2

)
(∂xN1 )

2

> (1− p)2

(
∂2π1

(
c1, x

N
1 , x

N
2

)
∂xN1 ∂c1

)2

=

(
∂2Π1

∂xN1 ∂c1

)2

where the last inequality follows from BGK Assumption 1. This establishes negative
definiteness of the Hessian on [c1, c1]× [x1, x1].

Negative definiteness implies concavity. Hence, in any subgame equilibrium, the
choices of c1, xN1 , and x

N
2 are always in pure strategies.

Then, we can show

Lemma 2 In any subgame perfect equilibrium, following the equilibrium action c1,
xN2 = xY2 and x

N
1 = xY1 .

Proof. The Lemma follows immediately from the fact that the systems (3) and (5)
are identical.

Since, in equilibrium, player 2 takes the same action regardless of whether he
observes or not, there is no value to observing. As observation is costly, it then
immediately follows that

Lemma 3 In any subgame perfect equilibrium, player 2 never observes 1’s action.

Together, these lemmas imply

Proposition 6 Indirect commitment has no value.
Formally, any subgame perfect equilibrium of the costly observation game is payoff

equivalent to a Nash equilibrium of the simultaneous game.
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The key insight from the proposition is that the fragility of commitment readily
extends to the case where commitment is indirect. Indeed, many real-world examples
of commitment, such as cost and branding spillovers, fall out as special cases of this
model.

4.3 Fershtman (1985)

One of the most influential applications of indirect commitment is Fershtman (1985).
He observes that most strategic decisions of firms are made by agents rather than
owners. He then shows that an owner of a firm can achieve commitment value by
appropriately structuring the agent’s incentive contract. A simple version of this
idea may be seen in a Cournot model with two competing firms. Clearly, a firm
would benefit if it could credibly commit to producing the Stackelberg-leader quantity.
Fershtman points out that, by making the agent’s remuneration dependent on output
as well as profits, such a commitment is indeed possible. Katz (1991) points out that
public observability is crucial for this result. When it is prohibitively costly to observe
the agent’s contract, then the game devolves to Cournot competition.
Our results thus far suggest that, even when the costs of observation are low,

the value of commitment is likely to be destroyed. Indeed, it would seem that the
situation at hand is simply a special version of the BGK model and, hence, we may
directly apply Proposition 6. However, notice that in the BGK model, even though
firm 1 can condition its choice of x1 on firm 2’s observation decision, it cannot credibly
commit to a particular x1 ahead of time. When x1 is chosen by an agent, on the other
hand, firm 1 can precommit through its choice of contract. As we show below, this
additional level of commitment is suffi cient to preserve firm 1’s strategic advantage,
even when observation is costly.
To illustrate the idea, we return to the Stackelberg-Cournot setting described in

Section 2.1 but amend the model in the following way: Suppose that prior to choosing
x1, firm 1 can offer a contract to an agent that leaves the firm’s choice of quantity
up to the agent. A contract consists of a schedule of payments to the agent that is
contingent on his quantity choice, x1, as well as the observation decision of the rival
firm. Assume that the outside option of the agent is normalized to zero. Following the
contracting stage, the rival firm 2 can choose whether to observe the agent’s contract
at a cost ε > 0. After the contracting and observation stages, firms choose quantities
simultaneously.
Consider a subgame perfect equilibrium where firm 1 offers the following contract

to the agent: If firm 2 observes, choose the Stackelberg quantity x1 = 1−c
2
and receive

a bonus δ > 0; choose any other quantity and earn nothing. If firm 2 does not observe,

choose the quantity x′1 ∈
(

1− 2
√

1
16
− ε, 1

)
and receive the same bonus δ; choose

any other quantity and receive nothing. The bonus, δ, can be arbitrarily small.
Provided observation costs are suffi ciently small, notice that firm 2 is strictly

better off observing the contract, even though it already knows what contract firm
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1 has signed with its agent. In this case, observation provides no new information
but prevents punishment. Specifically, if firm 2 chooses not to look, firm 1’s agent
produces such a large quantity that firm 2 is better off paying the observation cost
and being a Stackelberg follower instead. Thus, we have shown:

Proposition 7 When observation costs are suffi ciently low, the optimal agency con-
tract perfectly preserves the value of commitment.

While we have couched the analysis in terms of a model with linear demand and
zero marginal costs, the result readily extends. The main idea is simply that firm 1
can commit its agent to punish firm 2 for not observing the contract. To avoid the
punishment, firm 2 observes and, as a consequence, firm 1 enjoys the usual benefit
from commitment.

5 Conclusions

We have shown that underlying many models of commitment is the implicit assump-
tion that a follower not just can, but must observe the leader’s actions. When ob-
servation is costly, the second mover only observes the first mover’s actions if doing
so is informationally valuable in equilibrium. And when the game is “well-behaved,”
the first mover simply cannot commit to making this information valuable by ran-
domizing his actions. As a result, the second mover chooses not to observe and the
value of commitment unravels. Put differently, for a broad class of games, small costs
of observation are outcome and payoff equivalent to circumstances where the cost of
observation is infinite or where observation is simply impossible.
In games where the value of commitment is associated with a first mover advantage–

such as in Stackelberg-Cournot quantity competition– this is perhaps not all that
surprising. After all, the second mover is hurt by the commitment power of the first
mover and will be searching for opportunities to negate his opponent’s advantage.
However, our result also applies to settings where there is a second mover advan-
tage, such as in differentiated product Bertrand competition. Here, the second mover
would like to commit to observe the first mover’s price choice but cannot do so, since,
in equilibrium, there is nothing new to be learned from observing it. Our results
also extend to situations where commitment is indirect, as is the case with cost or
branding spillovers across markets. This remains true even when the first mover gets
to condition his subsequent actions on the observation decision of the second mover.
This is not to say that commitment in the presence of observation costs is impos-

sible. However, the kind of commitment needed is stronger than what is typically
assumed. In particular, when the first mover can hire an agent to choose actions
contingent on the observation decision of the second mover, then he can credibly
threaten to punish the second mover for not observing and, thereby, restore the value
of commitment.
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